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This paper studies grading algorithms for 
randomized exams. In a randomized exam, 
each student is asked a small number of 
random questions from a large question 
bank. The predominant grading rule is simple 
averaging, i.e., calculating grades by 
averaging scores on the questions each 
student is asked, which is fair ex-ante, over 
the randomized questions, but not fair ex-
post, on the realized questions.  The fair 
grading problem is to estimate the average 
grade of each student on the full question 
bank.  The maximum-likelihood estimator for 
the Bradley-Terry-Luce model on the 
bipartite student-question graph is shown to 
be consistent with high probability when the 
number of questions asked to each student 
is at least the cubed-logarithm of the number 
of students. In an empirical study on exam 
data and in simulations, our algorithm based 
on the maximum-likelihood estimator 
significantly outperforms simple averaging in 
prediction accuracy and ex-post fairness 
even with a small class and exam size.

Randomized Exam

1. Assign a small number of random questions to each student 
(task assignment graph 𝐺)

2. Grade students according to the exam result (exam result 
graph 𝐺!)
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Fair Grading Algorithms for Randomized Exams

Model [Bradley and Terry 1952, Rasch 1993]
One-dimensional model: an unknown parameter vector 𝑢, 
where 𝑢" for student 𝑖 ∈ 𝑆 represents her ability and 𝑢# for 
question 𝑗 ∈ 𝑄 represents its difficulty.

Result of answering process: a Bernoulli random variable 𝑤"# 
for student 𝑖 and question 𝑗, where 𝑤"# = 1 represents a correct 
answer and 𝑤"# = 0 represents an incorrect answer

Probability distribution of 𝑤"#: softmax of the student ability 𝑢" 
and the question difficulty 𝑢#,

Pr 𝑤"# = 1 = 1 − Pr 𝑤"# = 0 =
exp(𝑢")	

exp 𝑢" + exp 𝑢#
= 𝑓 𝑢" − 𝑢# ,

where 𝑓 𝑥 = $
$%&'((*+)	

.

Theoretical Results

Theorem (Existence and Uniqueness of MLEs). If
exp 𝛼.,0 𝑛 + 𝑚 log 𝑛 + 𝑚

𝑛𝑑.,0
→ 0	 𝑛,𝑚 → ∞ ,

where 𝛼.,0 = max
",#∈2∪4

𝑢" − 𝑢# is the largest difference between 
all possible pairs of parameters, then 
Pr 𝑢∗	𝑒𝑥𝑖𝑠𝑡𝑠	𝑎𝑛𝑑	𝑖𝑠	𝑢𝑛𝑖𝑞𝑢𝑒 → 1, where 𝑢∗ is the MLE vector.

Theorem (Uniform Consistency of MLEs). If

exp 2 𝛼.,0 + 1
𝑚 log6 𝑛 + 𝑚

𝑛𝑑.,0 log7
𝑛
𝑚𝑑.,0

→ 0	 𝑛,𝑚 → ∞ ,

then 𝑢∗ is uniformly consistent, i.e., 𝑢∗ − 𝑢 8→
ℙ
0.

Corollary (Upper Bound on the Exam Length when 𝒏 = 𝒎 
and 𝜶 = 𝑶(𝟏)). If

log 𝑛
𝑑.,0

→ 0	 𝑛,𝑚 → ∞ ,

the MLEs exist and are unique. If 
log6 𝑛

𝑑.,0 log7 𝑑.,0
→ 0	 𝑛,𝑚 → ∞ ,

the MLEs are uniformly consistent.

Theorem (Ex-post Error of Our Algorithm). In the case 
where the MLEs exist and are unique, we have ∀𝑖 ∈ 𝑆, (

)
𝑎𝑙𝑔" −

𝑜𝑝𝑡" 7 ≤
$
:
𝑢∗ − 𝑢 8

7 .

Visualization of Simple Averaging’s Ex-post Unfairness

Setting: 35 students, each asked 10 out of 22 questions.
Ex-post grade deviation: 𝐸; 𝑎𝑙𝑔" − 𝑜𝑝𝑡"

Our Algorithm

Our algorithm is based on the maximum likelihood estimators 
(MLEs), with additional strategies to solve the case when 
MLEs do not exist. Our algorithm makes different predictions 
ℎ"# for four types of student-question pairs.

Existing Edge (when 𝑤"# is revealed in the exam results graph): 
We make prediction the same ℎ"# = 𝑤"#.

Same Component (when 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑄 are in the same 
strongly connected component): It can be proved in theory that 
the MLEs 𝑢∗ exist within the component. And we use the MLEs 
for predition, i.e., ℎ"# = 𝑓 𝑢"∗ − 𝑢#∗ .

Comparable Components (when 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑄 are in different 
strongly connected components and there is a directed path 
linking them): From the property of the directed graph, all 
directed paths linking them have the same direction. if it goes 
from the student to the question, we regard it as a strong 
evidence that the student has a much higher level of ability 
than the question’s difficulty, so we make a prediction ℎ"# = 1; 
for the opposite direction, we make a prediction ℎ"# = 0.

Incomparable Components (when 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑄 are in 
different strongly connected components and there is no 
directed path linking them): We take the average of the above 
three types of predictions on student 𝑖 as the prediction for this 
edge. It is the same strategy as simple averaging.

~ℬ 𝑛,𝑚, 𝑑 ~model in theory/simulation

Fairness of the Algorithm

Algorithm: an arbitrary mapping from the exam result to student 
grades 𝑎𝑙𝑔

Benchmark: the expected grade student gets from the 
traditional exam design

∀𝑖 ∈ 𝑆, 𝑜𝑝𝑡" =
1
𝑄
X
#∈4

𝔼 𝑤"#

Different ways to compare the algorithm to the benchmark due 
to two sources of randomness: 
1. random task assignments
2. students’ random mistakes.

Ex-ante Bias: Compare the students’ expected grade over the 
random task assignments and their random mistakes to the 
benchmark.

𝐸<𝐸; 𝑎𝑙𝑔" − 𝑜𝑝𝑡" 7

Ex-post Bias: Given a task assignment, compare the students’ 
expected grade over their random mistakes to the benchmark.

𝐸; 𝑎𝑙𝑔" − 𝑜𝑝𝑡" 7

Ex-post Error: Directly compare the final grade to the 
benchmark

𝑎𝑙𝑔" − 𝑜𝑝𝑡" 7

Simple Averaging

Definition: Given an exam result graph 𝐺!, simple averaging 
grades student 𝑖 by

avg" =
deg"%	

deg"* + deg"%
=
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡
#𝑎𝑠𝑘𝑒𝑑 ,

where deg"% and deg"* represents the outdegree and indegree.

Fact (Ex-ante Fairness): Simple averaging is ex-ante fair over 
any family of task assignment graphs 𝒢 that is symmetric w.r.t. 
the questions.

Simple Averaging Our Algorithm

Ex-post Error and Bias-Variance Decomposition

The ex-post error can be decomposed into ex-post bias and 
the variance of the algorithm.
Theorem (Bias-Variance Decomposition).
𝔼<𝔼"𝔼; 𝑎𝑙𝑔" − 𝑜𝑝𝑡" 7
= 𝔼<𝔼" 𝔼; 𝑎𝑙𝑔" − 𝑜𝑝𝑡" 7 + 𝔼<𝔼"𝔼; 𝑎𝑙𝑔" − 𝔼; 𝑎𝑙𝑔" 7

Setting: 35 students, each asked 10 out of 22 questions.

Ex-post Bias Variance Ex-post Error

Ours 0.00004 0.0188 0.0188

Avg 0.00331 0.0170 0.0203

Ours-Avg -0.00327    -99% 0.0018    +10% -0.0015    -8%

We consider the problem of choosing the size of the question 
set from an infinite question bank.
Setting: 5 students, each asked 5 questions. 

Optimal Exam Design

We randomly split the training set and the test set and measure 
the logarithm of mean square error. We also give a reference 
on when to choose our algorithm.
Setting: 35 students, 22 questions. 

Real World Data Cross Validation


