Fair Grading Algorithms for Randomized Exams

Jiale Chen, Department of Management Science and Engineering, Stanford University Jason Hartline, Department of Computer Science, Northwestern University
Onno Zoeter, Booking.com

This paper studies grading algorithms for randomized exams. In a randomized exam each student is asked a small number of andom questions from a large question bank. The predominant grading rule is simple averaging, i.e., calculating grades by averaging scores on the questions each student is asked, which is fair ex-ante, over he randomized questions, but not fair ex post, on the realized questions. The fair grading problem is to estimate the average grade of each student on the full question bank. The maximum-likelihood estimator for he Bradley-Terry-Luce model on the bipartite studen-question graph is shown to number of questions asked to each student is at least the cubed-logarithm of the number f students. In an empirical study on exam data and in simulations, our algorithm based on the maximum-likelihood estimator significantly outperforms simple averaging in prediction accuracy and ex-post fairness even with a small class and exam size.

Randomized Exam

1. Assign a small number of random questions to each student

Model [Sracaley and Terry 1952, Rasch 1993] One-dimensional model: an unknown parameter vector $u_{\text {, }}$
where u_{i} for student $i \in S$ represents her ability and u_{j} for question $j \in Q$ represents its difificulty.

Result of answering process: a Bernoullir random variable $w_{i j}$
for student i and question j, where $w_{i l}=1$ represents a correct for student i and question J, where $w_{i j}=1$ represents
answer and $w_{i j}=0$ represents an incorrect answer

Probability distribution of $w_{i j}$: sotmax of the student ability u_{i}
and the question difficulty and the question difificuly u_{j},
$\operatorname{Pr}\left[w_{i j}=1\right]=1-\operatorname{Pr}\left[w_{i j}=0\right]=\frac{\exp \left(u_{i}\right)}{\exp \left(u_{i}\right)+\exp \left(u_{i}\right)}=f\left(u_{i}-u_{j}\right)$, where $f(x)=\frac{1}{1+\exp (-x)}$.

Fairness of the Algorithm

forithm: an arbitrary mapping from the exam result to student
grades $a l q$
Benchmark: the expected grade student gets from the
raditional exam design

$$
\left.\forall i \in S, o p t_{i}=\frac{1}{|Q|} \sum_{j \in Q} \mathbb{E}\left[w_{i}\right]\right]
$$

Different ways to compare the algorithm to the benchmark due
two sources of randomness:
10 two sources of randomnes
2. students's random mistake

Ex-ante Bias: Compare the students' expected grade over the
random task assignents and their random mistakes to the random task
benchmark.

$$
\left(E_{G} E_{W}\left[a l g_{i}\right]-o p t_{i}\right)
$$

Ex-post Bias: Given a task assignment, compare the students
expected grade over their random mistakes to the benchmark. ${ }_{\left(E_{w}\left[a l g_{i}\right]-o p t_{i}\right)^{2}}$

Ex-post Error: Directly compare the final grade to the

$$
\left(a l g_{i}-o p t_{i}\right)^{2}
$$

simple Averaging

Definition: Given an exam result graph G^{\prime}, simple averaging
grades student i by
Defrntion stiven
$\operatorname{avg}_{i}=\frac{\operatorname{deg}_{i}^{t}}{\operatorname{deg}_{i}+\operatorname{deg}_{i}^{t}}=\frac{\# \text { correct }}{\# \text { asked }}$
where deg ${ }_{i}^{t}$ and degei $_{i}^{-}$represents the outdegree and indegree.
Fact (Ex-ante Fairness): Simple averaging is ex-ante fair over.
any family of task assignment graphs 9 that is symmetric w.r.t. any tamily of ta
the questions.

Our Algorithm

Our algorithm is based on the maximum likelihood estimators (MLEs), with addolitional strategies to solve the case when MLEs tor fot exist. Our algorithm makes dififerent predictions

Existing Edge (when w_{w} is revealed in the exam results graph) We make prediction the same $h_{i j}=w_{i i}$.

Same Component (when $i \in S$ and $j \in Q$ are in the same
strongly connected component: It can be proved in theory strongles u^{*} exist within the component. And we use the MLES
the MLE for predition, i.e., $h_{i j}=f\left(u_{i}^{*}-u_{j}^{*}\right)$.
Comparable Components (when $i \in S$ and $j \in Q$ are in diftere strongly connected components and there is a directed d path
linking them): From the property of the directed graph, all directed paths linking them have the same dierection. it if tooes
trom the student to the question, we regard it as a strong evidence that the student has a much higher level of abilily than the question's difificulty, so we make a prediction $h_{i j}$
or the oposite direction, we make a prediction $h_{i j}=0$.
Incomparable Components (when $i \in S$ and $j \in Q$ are in
dififerent strongly connected components and there is directed path pangly connected components and there is no three types of predictions on student i as the prediction for this

Theoretical Resulis

Theorem (Existence and Uniqueness of MLEs). $\exp \left(\alpha_{n, m}\right)(n+m) \log (n+m)$ here $\alpha_{n, m}=\underset{i, j, S \in S O Q}{\max } u_{i}-u_{j}$ is the largest difference betwee all possible pairs of parameters, then
Pr $\left[u^{*}\right.$ e exsts and is uniquel $\rightarrow 1$, where
eon (Union Cof
$\exp \left(2\left(\alpha_{n, m}+1\right)\right) \sqrt{\frac{m \log ^{3}(n+m)}{n d_{n, m} \log ^{2}\left(\frac{n}{m} d_{n, m}\right)}} \rightarrow 0(n, m \rightarrow \infty)$,

Corollary (Upper Bound on the Exam Length when $n=$
Corollary (Upper Bound on the Exam Le
and $\alpha=0(1))$ If
$\stackrel{\log n \rightarrow 0(n, m \rightarrow \infty),}{ }$
$\frac{d_{n, m}}{\text { the MLEs exist and are unique. If }}$

MLEs are uniformly consistent.

Theorem (Ex-post Error of Our Algorithm). In the case
Theorem (Ex-post Error of our Aligorithm). In the case opti) $)^{2} \leq \frac{1}{4}\left\|u^{*}-u\right\|_{\infty}^{2}$
Visualization of Simple Averraging's Ex-post Unfairness
Setting: 35 students, each asked 10 out of 22 questions.
Ex-post grade deviation: $E_{w}\left[a g_{g_{]}}-\right.$opt $_{i}$
Simple Averaging

Ex-post Error and Bias-Variance Decomposition

The ex-post error can be decomposed into ex-post bias and he variance of the alcorithm. heorem (Bias-Variance Decomposition)

Setting: 35 students, each asked 10 out of 22 questions

	Ex-post Bias	Variance	Ex-post Error
Ours	0.00004	0.0188	0.0188

Avg $0.00331-0.0170 \quad 0203$

| Ours-Avg | -0.00327 | -99% | 0.0018 | $+10 \%$ | -0.0015 |
| :--- | :--- | :--- | :--- | :--- | :--- |-8%

Optimal Exam Design

We consider the problem of choosing the size of the question
set from an infinite question bank.
Selting: 5 students, each asked 5 questions.

Real World Data Cross Validation
We randomly split the training set and he logarithm of mean square error We also give an afereasure Setting: 35 studenents, 22 questions.

